
A Non-Intrusive Process to Software Engineering

Decision Support focused on increasing the Quality of

Software Development

Everton Gomede and Rodolfo M. Barros

Computer Science Department

State University of Londrina, UEL

Londrina, Brazil

evertongomede@gmail.com, rodolfo@uel.br

Abstract — The lack of quality in the production process of

software development isn’t attributed only to the techniques and

technologies, but also to the lack of process that management

decisions. Thus, this paper presents a process model for Software

Engineering Decision Support focused on improving the quality of

software development. Its preparation was based on areas and

expected results of the process Decision Management present in

the Reference Model for Brazilian Software Process Improvement

(MR-MPS)1. In order to contribute to its understanding and use,

it is presented a comparative study with other models present in

the literature and identifies its benefits and problems with an

application in two software development projects. The result of

this process was a 78% reduction in rework and a 22% increase

in performance of the team.

Keywords - Decision Support; Analytic Hierarchy Process;

Historical Database; Increase Quality of Software Development.

I. INTRODUCTION

During the software development lifecycle we can find a set
of decisions that should be taken in order to increase product
quality and / or respect any project restrictions imposed [1, 3, 6,
14]. Some of these restrictions can be seen in Fig. 1. But (i)
what are the decisions that must be taken throughout the
software development lifecycle? (ii) How these decisions affect
the later stages and final product quality? (iii) How to make
structured and tracked decisions throughout the software
development lifecycle? (iv) And how to make these decisions
not intrusive to the existing software development process?

Figure 1. Some restrictions that must be balanced in a project [1].

We will examine these issues in greater depth starting from
the issue (i):

A. What are the decisions that must be taken throughout the

software development lifecycle?

Consider a software development process such as Rational
Unified Process (RUP) [2] shown in Fig. 2. Several decisions
must be made along each disciplines and iterations. For
instance, on the discipline “Business Modeling” decisions as (i)
which processes are the most urgent? (ii) What processes are at
greatest risk? (iii) What are the core and support processes?
And others may emerge early in the software development
process. Its results will affect the other phases of the process
[1]. This leads us to the second issue:

B. How these decisions affect the later stages and final

product quality?

The next steps of the process will be affected since they use
up the results of previous decisions to plan their executions [1].
Regarding the quality of the final product, the result will be a
very strong relationship to the quality of the process [3]. Since
decisions were made erroneous so there is a greater probability
of final product to be a poor quality.

Figure 2. The Rational Unified Process (RUP)

C. How to make structured and tracked decisions throughout

the software development lifecycle?

In an engineering work where most decisions are
techniques [5], it should be structured and stored in a Historical
Database (HDB). The decisions created and stored in HDB can
be accessed and / or reused in the future, making the HDB in an
organizational asset [1]. Last but not least:

1 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)

D. How to make these decisions not intrusive to the existing

software development process?

Despite the engineering, software projects are creative [6].
Extra bureaucracy can reduce the creativity of developers and /
or create unnecessary overhead.

Considering what was previously exposed, the aim of this
work is to present a model of process focused on the increase
of the quality of the software development process. For its
elaboration we based on the expected areas and results of the
Decision Management Process presents in the C maturity level
of MR-MPS [14]. For this we propose a non-intrusive process
to support decision making in software engineering (NIPSEDS)
using the method Analytic Hierarchy Process2 (AHP) and a
Historical Database (HDB) to address the issues A, B, C and D.

This article is divided in six elementary sections, including
this introduction. In Section 2 we presented the related work
and theory. In Section 3 we presented the process model to
Software Engineering Decision Support. Section 4 we
presented the validation of model through a case study. Section
5 we presented the results of the research. Finally, Section 6 we
presented the conclusions and suggestions for future works.

II. THEORY

A. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) was first proposed
by Thomas L. Saaty [15] and its main characteristic is the
pairwise comparison which consists of a hierarchy of criteria
and alternatives. It is often used to analyze problems of
decision-making multi-criteria. By using AHP, the structure of
the problem must be decomposed into a hierarchy.

A hierarchy is a specific system based on the assumption
that the entities can be grouped into disjoint sets with a group
of entities which affects the other ones [15]. Pairwise
comparison is an important component of the AHP. Two
criteria are compared using a nine-point scale, where one (1)
means “equal” importance, three (3) is “low” importance, five
(5) “indicates” clearly “superior”, seven (7) is “very” important
and nine (9) denotes “extremely” important. With pair numbers
being used to indicate intermediate values, if necessary. If there
are n criteria to consider, n(n-1)/2 comparisons of pairs had to
be done. Thereafter, the reciprocal nxn matrix is constructed
and weights are then obtained [11, 12].

The consistency of pair comparison matrix needs to be
verified by means of the indexes: Consistency Index (CI) and
Consistency Rate (CR). They are defined in equation (1) and
(2) with λmax being the principal value (Eigen) and Random
Index (RI) is as shown in Table I. For consistency, CI and CR
must be less than 0.1 for the AHP analysis is considerate
acceptable [11, 12].

 C.I. = (λmax – n) / (n – 1)

 C.R. = C.I. / R.I.

TABLE I. RANDON INDEX

n 1 2 3 4 5 6 7 8 9 10

R.I. 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

B. Related Work

In addition to recommendations of the MR-MPS guide
[14], we found in literature some works that address issues
related to management decisions during the software
development lifecycle. In [7] the authors integrating the
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and AHP into Goal-Oriented Requirements
Engineering (GORE) in a Decision Support System (DSS) to
produce a metric of choice among the best alternatives.
However, this paper addresses only the initial phase of the
project. In [8] the authors use a group decision technique only
to the requirements phase. In [9] the authors use data mining
techniques to software engineering decisions. This adds an
overhead to the process. In [10] the authors document the
decisions made throughout the software development lifecycle
but without the concern in structuring decisions. This work
presents a historical database. Table II compares related work
with this model process.

TABLE II. RELATED WORK COMPARED WITH THIS MODEL PROCESS

Criteria
Related Work

[7] [8] [9] [10] This

Structured Decision

Decision Traced

During the Lifecycle

Historical Database

Non-Intrusive Process

 Strongly cares to partially care to and without symbol don´t attends. These criteria support areas

and expected results (from GDE1 to GDE7) of Decision Management Process of MR-MPS [14].

C. Reference Model for the Brazilian Software Improvement

Process3

Developed in 2003 by the SOFTEX4 as part of the MPS.Br5
program, the MR-MPS consists of a reference model with the
definition of prerequisites for the improvement of the quality of
the software process. Besides it, the program is composed by
an Assessment Method (MA-MPS) and a Business Model
(MN-MPS), each one of them described by guides and/or
document models.

In accordance with Capability Maturity Model Integration
for Development (CMMI-DEV) and following the described
headlines in its main program, this model was divided into
seven maturity levels. These levels define steps to
improvement processes in the organization [14]. Moreover, this
division aims to enable its implementation and assessment in
micro, small and medium enterprises.

These maturity levels are composed by processes which
define what the expected results are, and capabilities which
express its institutionalization level and implementation in the
organization. Thus, it is noteworthy that the development

2 Implemented through Expert Choice, http://expertchoice.com/
3 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)
4 Associação para Promoção da Excelência do Software Brasileiro
5 Programa para Melhoria do Processo do Software Brasileiro (MPS.Br).

among these levels happens cumulatively and only when all
demands were found.

III. NON-INTRUSIVE PROCESS TO SOFTWARE ENGINEERING

DECISION SUPPORT (NIPSEDS)

To characterize the proposed process we divided it into (i)
Activities, (ii) Roles, (iii) Tools & Techniques and (iv) Inputs
and Outputs.

A. Activities

We grouped the activities of process in groups identified as
(i) Structure Decision, (ii) Make Decision (iii) Store Decision
and (iv) Publish Decision. This division aims to facilitate
understanding and enable semantics view related to the actors.
These groups are based on C level of MR-MPS [14]. Fig. 3
shows these activities.

Figure 3. Process Groups of the Non-Intrusive Process to Software

Engineering Decision Support (NIPSEDS)

This support process can be executed at any discipline or
RUP iteration (Fig. 2). RUP is a process used by public
university (Section 4) of this case study. The NIPSEDS can be
applied to any process of software development. Fig. 4 holds a
more detailed model.

Figure 4. The Non-Intrusive Process to Software Engineering Decision

Support (NIPSEDS)

B. Roles

The roles used in the process are two: (i) Project Manager
(or Scrum Master) and (ii) Decision-Makers (which can be

developers, database administrators, architects, testers, business
analysts, and others). Fig. 5 shows these roles and their
relationship with the activities.

Project Manager

Identify the purpose of the decision

Identify available alternatives

Identify the evaluation criteria

Invite the decision makers

Make the decision by the AHP method

Generate a copy of the result of the decision

Store the decision in a historical database

Publish on a website the result of decision

Notify stakeholders

Decision Maker

Figure 5. Roles of The Non-Intrusive Process to Software Engineering

Decision Support (NIPSEDS)

Note that the Project Manager participates in all process
activities. This is important to have an “Owner” of the process
being responsible for ensuring the use of it and its constant
improvement. The role of Project Manager was chosen to
represent someone with administrative and managerial
responsibilities for the project and not only with technical
responsibilities.

C. Tools & Techniques

The AHP was the technique used to structure the decision.

Further details and examples of how to use it can be seen in

[11, 12]. For the tool we used the Expert Choice. It´s

important to note that in this process is possible to use tools

and techniques adapted to the software development process

of the organization. The AHP technique comprises three

activities of the group process Structure Decision:

 Identify the purpose of the decision. This activity seeks
to identify the final goal of the decision, i.e., what we
intend to achieve. As obvious as it may seem, this is
not always trivial.

 Identify available alternatives. Identifying alternatives
consists basically of an investigation process. The
alternatives available are not always by the team
known and / or have been used in the past by the
organization. The important thing here is to research
and rank the possible options that can be used for
decision making.

 Identify the evaluation criteria. The criteria are the
attributes that the alternatives listed must be compared.
These criteria may be conflicting or mutually
exclusionary. The AHP helps prioritize these criteria
into a hierarchy [11, 12].

D. Inputs and Outputs

The process inputs are (i) the decision objective, (ii) a set of
alternatives, (iii) a set of criteria, (iv) the stakeholders and a (v)

method to assist in structuring the decision (in the case AHP).
The outputs are (i) the decision result and (ii) the decision
documentation, thus creating an organizational memory [1].

These inputs and outputs are important to the creation of
Historical Database (HDB). This artifact can be considered as
an organizational asset [1], since it stored the decisions made
throughout the lifecycle and to allow that future decisions are
based on a set of criteria that are always feedback. Fig. 6 shows
a HDB class diagram.

Decision

Project

CriterionParticipant

Alternative Result

0..*

1..*

1..*
1..*

1..*

Figure 6. The Historical Database (HDB) class diagram

IV. VALIDATION

The research methodology used in this article was a case
study. According to Yin [13], case studies offer an empirical
research that investigates a contemporary phenomenon and
offers researchers an object of applied study in its natural
context. And, in addition, new facts and research issues about
this environment can be identified [13].

In order to work on the case study, we selected a project of
a software factory in a public university. Their teams were
composed by undergraduate and master’s students. Because of
this, the organization suffers with the seasonality issues in
periods of academic activity, lack of commitment, interest and
a low rate of productivity in its members. Another problem of
this organization is the lack of a process of preservation of
intellectual capital generated during the projects.

During two projects with 6 iterations of 15 days each, we
apply the NIPSEDS and 3 variables were collected (i) Rework
Index, (ii) Structured Decision and (iii) Performance Index. To
illustrate the NIPSEDS, one structured decision will be
presented below separated by the process groups. This decision
was performed in the second iteration of the first project and is
intended to decide which persistence framework to use.

A. Structure Decision

The outputs of these process group activities are
summarized in Fig. 7. The alternatives are (i) Entity Enterprise
Java Beans6, (ii) Hibernate7, (iii) Java Persistence API8 and (iv)
TopLink9. These are some persistence framework to java
software development. It is important to note that all decision
elements (goal, criteria and alternatives) so collected by the
team.

Figure 7. Criteria hierarchy (“Struture Decision” activities output)

B. Make Decision

With the established hierarchy made up some iteration
where each participant reported their preference about the
criteria and alternatives [11, 12]. The result of these
preferences can be viewed in Fig. 8.

Figure 8. Hierarchy with the preferences result (more details in [11, 12])

After consensus about the choice, the outcome of the
decision can now be display. Fig. 9 shows decision results.

Figure 9. Decision results (represents a consensus about the choice)

The Expert Choice allows different analyzes about the
decision taken. Two of them can be seen in Figures 10 and 11
respectively. Fig. 10 shows the sensitivity of alternative groups
of criteria. Fig. 11 shows the result of adherence with relation
to the criteria.

Figure 10. Alternatives sensibility of on criteria group

6 http://docs.oracle.com/cd/E16764_01/web.1111/e13719/toc.htm
7 http://www.hibernate.org/
8 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
9 http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Figure 11. Adherence with relation to the criteria (note coverage of ≃72%
regarding the the objective criteria)

C. Store Decision

After consensus about the choice, the outcome of the

decision can now be stored. Table III shows an example of

stored result.

TABLE III. EXEMPLE OF STORED RESULT

Attribute Value

Date & Time 18/10/2012 – 10:50

Goal
Which framework to use for the
persistence layer?

Alternatives

1. Entity Enterprise Java Beans

2. Hibernate
3. Java Persistence API

4. TopLink

Criteria

1. Learning
 1.1. Documentation

 1.2. Open source

2. Architecture
 2.1. Evolution over time

 2.2. Performance

 2.3. Ease of integration
 2.4. Amount of code to be written

 2.5. Adaptability

 2.6. Library size
3. Administration

 3.1. Licensing

 3.2. Cost
 3.3. Support

Result 1. Entity Enterprise Java Beans

Decision Makers

Bill

Mark

Steve

These data were stored in the structure shown in Fig. 6 (Section 3 D). Artifacts such as images and

Portable Document Format (PDF) can be annexed increase the quality of Historical Database (HDB).
The Decision Maker’s names were changed for confidentialy questions.

D. Publish Decision

The published result can be seen in Fig. 12. Effective
communication creates a bridge between diverse stakeholders
who may have different culture and organizational
backgrounds, different levels of expertise, and different
perspectives and interests, which impact or have an influence
upon the project execution or outcome [1].

Figure 12. Published decision in project´ website

V. RESULTS & ANALYSIS

In order to validate the process model, some performance
indicators for information and data collection were defined and
applied (Section 4). Through the analysis of these sources, it
was possible to identify advantages and limitations of
NIPSEDS. Afterwards, the results obtained with this research
are described. The first indicator shows the variation in the rate
of rework. This is because high levels of rework were
presented as major problems during the development of a
project.

Through decisions made throughout the project, we have
tried to reduce the number of rework. Thus, solving the rework,
this metric helps the project manager to identify the level of
effectiveness of decisions. Fig. 13 shows this indicator.

Figure 13. Rework Index vs. Structured Decision

As can be observed in Fig. 13, the structured decisions

have strong relationship with the decreasing of rework. After

the implementation of the framework, this fact is evidenced by

the decrease in ≃78% (average) of this index in Projects, that

research contributes to the quality in the development process.

Besides this, there was an improvement on the perfomance

index of members by structuring decisions during project, it is

also important for improving quality in the development

process. This happens because the effectiveness of the

performance actually contributes to the effectiveness of the

members. Thus, by sctructuring decisions, seeks to empower

and qualify them so they can increase this indicator.

Furthermore, through this measure, makes it possible to

project manager to analyze the performance of its members

and, if necessary, take steps to improve them. Fig. 14 has the

graphics prepared for analysis of this index.

Figure 14. Performance Index vs. Structured Decision

Besides the rate of rework the structuring decision also
maintains a strong relationship with the improvement in the
performance index of members of the team. This fact strongly
evidenced by analyzing the graphs shown in Fig. 14. Through
them, it is noted that with the number of structured decision,
implemented by the framework, an increase of ≃22% in
performance of the members. And that contributes not only to
meet the deadline and measurement of the team, but also to
improve the quality of coding, and especially the ease of
maintenance. Thus, in a general way, through the analysis of
the performance indicators and collected information, the
following advantages were identified:

 Increased understanding of decisions: With the
structuring of decisions, the understanding of the
problem to be solved increases. This is reflected in the
later stages where decisions of the past can be retrieved
and validated;

 Improvement in the development process: The ongoing
process of analysis and monitoring ensured that the
best options were selected for each objective;

 Improvement in choice of criteria and/or alternatives:
These activities are improved by the selection and
utilization of criteria, alternatives and objectives stored
in the Historical Database (HDB);

 Increase of the organizational memory: The storage of
experiences, estimates, knowledge and performance of
team’s members during the development of the
projects, in the suggested HDB, has as objective to
keep this information available in the beginning of
every project in order to facilitate the future decisions.

Moreover, through continuous monitoring of performance
and decision aspects in software projects, it can be stated that
the mentioned advantages have contributed significantly for the
decrease of its rework and for the increase in performance and
improvement of its activities development. All these factors,
besides contributing significantly for the application of the
process model, also collaborate to the establishment of an asset
within the organization.

VI. CONCLUSIONS AND FUTURE WORKS

Analyzing the results obtained during the case study
development, we can evaluate the success in the
implementation of the process model. It is highlighted, mostly,
the increase in motivation of members and their performance,
resulting in a significantly improvement in its development
process and decrease rework.

Thus, focused on increase the quality of software
development process, the process model presented was
developed to attend, provide and add more value to process
used by organization through planning and continuous
structuring decisions. One possible limitation of this work is
the need for a certain level of maturity in software
development. C level according to MR-MPS [14]. In this case
study the responsibility to lead the process was delegated to the
most experienced organization member (Project Manager or
Scrum Master). Finally, as presented in Table II, this process
model differs from other existing process models in literature
and can be applied in a non-intrusive way.

As future work we intend to analyze the relationship
between times spent on decisions versus the time saved with
rework. This has an economic objective related to software
development.

REFERENCES

[1] PMI, A Guide to the Project Management Body of Knowledge (PMBOK
guide), Fifth Edition, Project Management Institute, Inc, 2013.

[2] P. Kruchten, The rational unified process: an introduction, ser. The
Addison-Wesley object technology series. Addison-Wesley, 2004.

[3] Lavallée, M., & Robillard, P, “The impacts of software process
improvement on developers: a systematic review”. International
Conference on Software, 113–122, 2012.

[4] Xuan S., “A Novel Kind of Decision of Weight of Multi-attribute
Decision-Making Model Based on Bayesian Networks, Business and
Information Management”, 2008. ISBIM '08. International Seminar on ,
vol.2, no., pp.30,33, 19-19 Dec. 2008.

[5] Colwell, B., “Engineering decisions”, Computer, vol.36, no.8, pp.9,11,
Aug. 2003.

[6] Yang F., Zhang W., “Exploration and practice of constructing creative
engineering laboratory on software development”, Computer Science &
Education (ICCSE), 2012 7th International Conference on , vol., no.,
pp.1597,1601, 14-17 July 2012.

[7] Vinay, S., Aithal, S. and Sudhakara, G., “Integrating TOPSIS and AHP
into GORE Decision”, International Journal of Computer Applications
(0975 – 8887) Volume 56– No.17, October 2012.

[8] Felfernig A., Zehentner C., Ninaus G., Grabner H., Maalej W., Pagano
D., Weninger L., and Reinfrank F., “Group decision support for
requirements negotiation”. In Proceedings of the 19th international
conference on Advances in User Modeling (UMAP'11), Springer-
Verlag, Berlin, Heidelberg, 105-116. 2011.

[9] Hassan, A., and Xie, T., “Software intelligence: the future of mining
software engineering data”. SDP workshop on Future of
software engineering, 161–165. 2010.

[10] Lewis, T., Spillman, R., and Alsawwaf, M., “A software engineering
approach to the documentation and development of an international
decision support system”. Journal of Computing Sciences. 2010.

[11] Gomede, E., Barros, R. M., “Utilizando o Método Analytic Hierarchy
Process (AHP) para Priorização de Serviços de TI: Um Estudo de Caso.”
In: VIII Simpósio Brasileiro de Sistemas de Informação, São Paulo. VIII
Simpósio Brasileiro de Sistemas de Informação, p. 408-419. v. 1. 2012.

[12] Gomede, E., Proenca JR., M. L. and Barros, R. M., “Networks Baselines
And Analytic Hierarchy Process: An Approach To Strategic Decisions.”
In: IADIS International Conference Applied Computing, 2012, Madri.
IADIS International Conference Applied Computing, p. 34-41. 2012.

[13] Yin, R. K, Case Study Research: Design and Method, Third Edition,
Applied Social Research Methods Series, Sage Publications, Inc, 2002.

[14] MR-MPS (Modelo de Referência para Melhoria de Processo do
Software Brasileiro). Associação para Promoção da Excelência do
Software Brasileiro, December, 2012.

[15] Saaty, T. L, The Analytic Hierarchy Process. New York: McGraw-Hill
International. 1980.

