
A Practical Approach to Software Continuous
Delivery Focused on Application Lifecycle

Management

Everton Gomede, Rafael Thiago da Silva and Rodolfo Miranda de Barros
Department of Computer Science

State University of Londrina
Londrina, Paraná, Brazil

e-mail: {evertongomede, rafathiago}@gmail.com, rodolfo@uel.br

Abstract—To deliver quality software continuously is a challenge
for many organizations. It is due to factors such as configu-
ration management, source code control, peer-review, delivery
planning, audits, compliance, continuous integration, testing,
deployments, dependency management, databases migration, cre-
ation and management of testing and production environments,
traceability and data post-fact, integrated management, process
standardization, among others. To overcome these challenges,
this paper presents a continuous delivery process that promotes
artefacts produced by developers, in a managed fashion, to pro-
duction environment, allowing bidirectional traceability between
requirements and executables, and integrating all activities of
software development using the concepts of Application Lifecycle
Management. As a result, we obtained an ecosystem of tools and
techniques put into production in order to support this process
1.

Keywords–Continuous Delivery; Process Quality; Application
Lifecycle Management

I. INTRODUCTION

Software Delivery Process (SDP) consists of several tasks
in order to promote artefacts created into the production
environment (servers where an executable is installed to de-
livery features to the users) [1]. These ones can occur in
either environment, producer or consumer. Due to the unique
characteristics of each software product, a general process
to various contexts probably cannot be set. Therefore, we
should interpret a SDP as a framework to be customized
according to the requirements and characteristics of each
product (Software Delivery Process, in this context, is a part
of Software Development Process).

This customization usually causes a manual execution of
SDP [2]. Production environment is configured in a manual
way by the infrastructure team using terminals and/or third-
party tools. Artefacts are copied from a continuous integration
server to a production environment and possibly some data
and/or metadata are adjusted before software is released.

However, this process has some weaknesses. Predictability
is the first one, because it increases risk, related with lost
business transactions, and downtime whether any unexpected
situation occurs [3]. Additionally, the repeatability factor may
compromise the diagnosis of post-deployment problems [2].
Finally, this process is not auditable and it does not allow

1DOI reference number: 10.18293/SEKE2105-126

the recovery of information about all events that were held to
deliver a version.

There is a growing interest in practices to overcome these
problems [4]. Such practices are known as Software Continu-
ous Delivery (SCD), defined as the ability to publish software
whenever necessary. This publication may be weekly, daily or
every change sent to the code repository. The frequency is not
important, but the ability to deliver when it is necessary [2].

This approach has great importance in software devel-
opment because it helps who is in charge of delivering to
understand better their process and, consequently, improve it.
Such improvements can be in terms of automation, decrease of
the delivery time, rework and risk reduction, or others. Among
them, the main is the ability to have a version of software,
ready for delivery, each new code added to the repository.

Additionally, the management of the activities of applica-
tion lifecycle, support this approach and help all team mem-
bers to improve their process [2], [4]. Application Lifecycle
Management (ALM) has been proposed with the objective
to provide a comprehensive technical solution for monitor-
ing, controlling and managing software development over the
whole application lifecycle [5].

Thus, we propose a question: Are the concepts of ALM aim-
ing at Software Continuous Delivery also an effective utility for
improving the software process? We try to answer this question
by describing the results and experiences from the introduction
of a Continuous Software Delivery solution complemented by
techniques of Application Lifecycle Management in a financial
industry company.

In this context, we present a practical approach to address
the problems of software continuous delivery and application
lifecycle management. The main objective is to contribute
with a setup of servers, process, techniques and tools that
assist to deliver software continuously. In addition, some
recommendations and further work are discussed. Issues re-
lated with software architecture, project management and other
dimensions of software development were omitted.

Therefore, this article was divided into five sections, includ-
ing this introduction. In Section II, we present fundamental
concepts and related works. In Section III, we present an
approach to Software Continuous Delivery focused on Ap-
plication Lifecycle Management. In Section IV, we present
the results. Finally, in Section V, we present conclusions,

320



recommendations and suggestions for future work.

II. FUNDAMENTAL CONCEPTS AND RELATED WORKS

There is a relation between quality of software products
and quality of the process used to build them. Implementation
of a process aims to reduce rework, delivery time and increase
product quality, productivity, traceability, predictability and
accuracy of estimates [2]. In general, a software development
process contains the activities shown in Fig. 1.

Figure 1. A simplified software development process [1], [2].

The configuration management tasks of deployment and
operation activities, highlighted in Fig. 1, are usually per-
formed manually [2]. This practice, according to Humble and
Farley [2], is accompanied by anti-patterns:

• Deploying software manually: there should be only
two tasks to perform manually; (i) choose a version
and (ii) choose the environment. These are goals to be
achieved in a SCD [5].

• Deploying after development (requirement, design,
code and tests) was complete: it is necessary to
integrate all activities of the development process and
put stakeholders working together since the beginning
of the project.

• Manual configuration management of the production
environments: all aspects of configured environments
should be applied from a version control in an auto-
mated way.

In this context, some Software Continuous Delivery Prac-
tices arises. It is a developing discipline, which builds up
software that can be released into production at any time, by
minimizing lead-time [3].

To assist this type of software delivery approach, from
construction to operation, Humble and Farley presents the De-
ployment Pipeline (DP), a standard to automate the process of
SCD. Despite each organization may have an implementation
of this standard, in general terms, it consists of the activities
shown in Fig. 2.

Figure 2. The deployment pipeline [2].

Over each change, artefacts are promoted to next instance
of pipeline through a series of automated tasks. The first step
of the pipeline is to create executables and installers from the
code repository, in a process known as Continuous Integration
(CI). Other activities perform a series of tests to ensure that the
executable can be published. If the release candidate passes all
tests and criteria, then it can be published [2].

To implement this pipeline, some approaches were pre-
sented. Among them, Krusche and Alperowitz [6] described
the implementation of a SCD process to multiple projects.
Their goal was to obtain the ability to publish software to
their clients with just a few clicks. The main contribution of
this work was to show that developers who have worked on
projects with SCD, understood and applied the concepts, being
convinced from the benefits of it.

Bellomo et al. [7] presented an architectural framework
together with tactics to projects that address SCD. The main
contribution of this work is a collection of SCD tactics in
order to get software products performing with a higher level
of reliability and monitoring into production environment.

Fitzgerald and Stol [4] published trends and challenges
related to what the authors called “Continuous *”, which is,
all topics related to software delivery that can be classified as
continuous. The authors addressed issues such as; Continuous
Integration (CI), Continuous Publication (PC), Continuous
Testing (CT), Continuous Compliance (CC), Continuous Se-
curity (SC), Continuous Delivery (EC), among others. An
important point of this paper is the distinction between the
Continuous Delivery and Continuous Publication. According
to the authors, Continuous Publication is ability to put into
production software products in an automated manner. This
definition is complementary to the software continuous deliv-
ery definition given above.

Although all these works have a practical nature, none of
them showed which tools were used, which recommendations
to similar scenarios and which were the techniques used during
deployment. Therefore, the work presented in this paper seeks
to fill these gaps.

III. A PRACTICAL APPROACH

A. Main Proposal
The Fig. 3 shows all macro elements involved in approach.

In the first line, there are two ones: (i) Development, represent-
ing the timeline of software development and (ii) Operation,
representing the timeline of software operation. The pipeline
of SCD is between both.

Figure 3. The big picture.

In the second and third line there are an ALM and activities
of software development and operation. Requirement, architec-
ture, build, repository, quality and component are related with
development, meanwhile incident and bug tracker are related
with operation. Log Monitor is used to collect and to integrate,
in an automated way, information about all elements. LDAP is
used to allow a single point of authentication and authorization
between all components.

321



B. Infrastructure
To provide an infrastructure that allows the Software Con-

tinuous Delivery is the main goal of setup shown in Fig. 4.
It has 4 areas: (i) Commit Stage (CS), (ii) Quality Assurance
(QA), (iii) Staging (ST) and (iv) Production (PD).

Figure 4. An overview of a setup of servers and areas.

C. Areas
The Commit Stage (CS) has primary responsibility to

implement continuous integration of all code reviews sent to
the repository. This area consists of the following services:

• Public Code Repository
◦ Purpose: to get code reviews that have not been

approved.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of all developers.
• Continuous Integration

◦ Purpose: to integrate all code reviews sent to
the server.

◦ Tool: Jenkins (jenkins-ci.org) and Maven
(maven.apache.org)

◦ Technique: it does integration performing unit
testing and adding first acceptance step in peer-
review server.

• Static Analysis
◦ Purpose: to make code analysis generating

quality reports.
◦ Tool: SonarQube (sonarqube.org).
◦ Technique: each integration performs a series

of tests, such as size metrics, complexity, test
coverage, dependency calculation, among oth-
ers. Creates a baseline quality of the project.

• Peer-Review
◦ Purpose: to enable promotion/rejection of

codes from public to canonical repository.
◦ Tool: Gerrit (code.google.com/p/gerrit).
◦ Technique: approval of two steps, the first

being carried out by continuous integration
server and the second by the configuration

manager. If the review through both sides, code
is promoted to canonical repository.

• Canonical Repository
◦ Purpose: to receive approved code reviews.
◦ Tool: Git (git-scm.com).
◦ Technique: it has a single branch, called mas-

ter, which receives revisions of peer-review
server.

• Repository Libraries.
◦ Purpose: to store libraries and components

used in integration.
◦ Tool: Nexus (sonatype.org/nexus).
◦ Technique: libraries and components are in-

stalled automatically or manually on the server
being available for use at the time of integra-
tion.

The layout and operation of Commit Area are shown in
Fig. 5.

Figure 5. Commit Stage Area (CS).

The Quality Assurance Area (QA) has the main purpose
of performing all automated tests and allow Quality Manager
perform manual tests, such as exploratory testing [2]. This area
consists of the following services:

• Continuous Integration
◦ Purpose: to obtain a copy of the code and

perform integration, functional and automated
load tests.

◦ Tool: Jenkins and Maven (maven.apache.org).
◦ Technique: get a copy of canonical repository

to generate executable, install them into library
server, application servers and database server.
After that, execute integration, functional and
load tests.

• Page Servers, Application and Database
◦ Purpose: to host application to test
◦ Tools: may vary according to the technology

used; Wildfly (wildfly.org) and MSSQL are
some examples.

◦ Technique: can vary depending on the technol-
ogy used (to install and configure, basically).

322



• Load Test
◦ Purpose: to perform a load test against the page

servers, application and database.
◦ Tool: Jmeter (jmeter.apache.org) and Vagrant

(vagrantup.com).
◦ Technique: it performs script created by quality

manager allocating hosts as required to test. It
generates a supported load from baseline.

The Operation of Quality Assurance area is shown in Fig.
6.

Figure 6. Quality Assurance Area (QA).

Staging Area aims to provide for monitoring users and
product owners an environment as close as possible to pro-
duction environment, so they perform approval tests. These
ones are related to user experience and their perception re-
garding how software product meets specified requirements.
This area has a copy of operating environments, both in terms
of operating systems, tools and settings, and in terms of data.
Monitored users are the ones chosen to perform approval tests
in a monitoring way. Occasionally, they are in the product
owner role. The Fig. 7 shows this area.

Figure 7. Staging Area (ST).

Finally, configuration manager makes promotion from
Staging Area artefacts to Production Area manually by Config-
uration Manager. However, developers and infrastructure staff
are present to perform this task. The Fig. 8 shows this area.

Figure 8. Production Area (PD).

Also, the following servers were used: (i) Log Server and
(ii) LDAP Server. The first has a very important function
in the setup; to get all events occurred by indexing logs.
This assists the diagnosis, providing information to reporting,
alerts and dashboard. The tool used in this case was Splunk.
The second server has a function to allow authentication and
authorization for all setup servers. This is necessary because
it is costly to maintain users across all the servers involved in
an individualized way, in addition this increase security flaws.
The tool used in this case was OpenLDAP (openldap.org).

D. Tools

The Tab. I summarizes all tools used with its URL. These
tools are used to Configuration Management (Git, Gerrit,
Nexus, Flywaydb and Vagrant), Continuous Integration (Jenk-
ins and Maven), Quality Assurance (SonarQube and Jmeter),
Application Lifecycle Management (Redmine) and infrastruc-
ture (Splunk and OpenLDAP).

TABLE I. TOOLS USED.

Goal Name URL
Continuous Integration Jenkins jenkins-ci.org
Source Repository Git git-scm.com
Build Maven maven.apache.org
Gathering Logs Splunk splunk.com
Peer-Review Gerrit code.google.com/p/gerrit
Static Analysis SonarQube sonarqube.org
Load Test Jmeter jmeter.apache.org
Library Repository Nexus sonatype.org/nexus
ALM Redmine redmine.org
Database Migration Flywaydb flywaydb.org
Automated Installation Vagrant vagrantup.com
Authentication/Authorization OpenLDAP openldap.org
Architecture Enterprise Architect sparxsystems.com.au

These tools were used because they are open/free software
or a well known tool among developers.

323



IV. RESULTS

Some results about this approach are related to automation
of many delivery tasks, coming out in a more predictable and
managed process. Another aspect, related to collaboration, is
due to communication between developers and infrastructure
team was increased in all aspects of the process, since planning
of a feature until its publication. These results are classified in
a process maturity level [2], as shown in Fig. 9.

Figure 9. Process maturity level [2].

The Fig. 10 shows the peer-review authorization. It helps
to protect the canonical repository and increase the quality
of code for 3 reasons: (i) improve the quality of commits,
each member tends to be more careful with a code that will
be evaluate by another one, (ii) allow to put a sequence in
commits avoiding collisions and wrong commits, (iii) allow to
configuration manager to decide if the code can be promoted
or not 2.

Figure 10. The peer-review authorization.

The Fig. 11 shows the integration of ALM tool (Redmine)
with the canonical repository. This allow traceability between
requirement, code, peer-review and repository. Among ben-
efits, some of them are: (i) vision end to end (requirement
to executable), (ii) fast diagnosis in case of mistake during
development (requirement, code, commit, release and other

2There are some words in portuguese because this picture was collected
from a real situation in a brazilian company. The same situation occurs in the
figures 10, 12, 13 and 14.

mistakes) and (iii) integrated management of application life-
cycle (requirement, models, code, issues, peer-review, release,
incidente, bugs, schedule, documents, wikis, forums, reports,
components, library, repository).

Figure 11. The integration of ALM tool with canonical repository.

The Fig. 12 shows a way, using some concepts of TOGAF
3, to developer the requirements (ecosystem, vision, require-
ment, rules, use case). A fashion used to link an element of
Enterprise Architect (EA) and the ALM tool was an ID, put
in each one (GNF001, for instance).

Figure 12. A way to developer requirements using some concepts of TOGAF.

The Fig. 13 shows the IC tool. Besides of all aspects
of IC, there are two related with quality, specifically with

3The Open Group Architecture Framework (TOGAF) is a framework to
enterprise architecture which provides an approach for designing, planning,
implementing, and governing an enterprise information technology architec-
ture. To see more, www.opengroup.org/togaf

324



tests: (i) snapshot of automated functional test, using Allure
Framework 4 and (ii) performance test, allowing identify the
performance of application during the builds evolution. The
first one is related with audit questions, as create evidence
about functional tests and the second one with technical
questions, as performance of some elements of application
(queries, class, methods, algorithms).

Figure 13. The IC tool.

The Fig. 14 shows the tool used to collect logs from all
elements. The importance of this tool is related with diagnosis
of all environments: (i) development and (ii) operation. There
are a lot of options of tools, for instance, Fluentd 5 and
Papertrail 6. The important is not the tool, but the concept
and to get the benefits of use. In case of doubt to choose one,
we recommend a method called Analytic Hierarchy Process
(AHP). More details about its use were shown in [8].

Figure 14. The tool used to collect logs from all elements.

In summary, the servers setup, tools and techniques were
used to support the main objective that is put software in opera-
tion in a managed fashion, reducing risk, rework and increasing
traceability, management, predictability and so forth.

As a macro result, the importance of this approach is
related with:

• Traceability and data post-fact: to allow to link all
elements using during software development process
(requirement, models, code, versions) and generate a
snapshot of all activities from each build (peer-review,
tests, deployment).

4github.com/allure-framework/
5fluentd.org
6papertrailapp.com

• Integrated management: all team members can use
the information generated by ALM tool, like releases,
issues, bugs, incidents, documents using only a local.

• Process standardization: a standard was created and
it is useful to communicate and help team to under-
stand better its process, allowing thus, a possibility of
quality increase.

V. CONCLUSION

This work presented a practical approach that can be used
in similar processes. Additionally, among the contributions can
be mentioned (i) a set of tools evaluated and (ii) a set of
techniques, that can be used for organizations that do not use
this type of approach, as for those which already have a higher
level of maturity.

Moreover, some further work may be developed to improve
setup provided in this article. The first one aims to get a strat-
egy for publication with less impact in terms of unavailability
of software products, including deployment across different
timezones. The second one is linked with multiple projects
scenarios. We can analyze how the artefacts, from several
projects, are promoted to production by the same team.

Finally, this article has a practical purpose. However, to
implement continuous delivery and application lifecycle man-
agement involves more than installing some tools and automate
some tasks. It depends on effective collaboration among all
of those involved in the delivery process, senior management
support and especially the desire of stakeholders in become
the changes a reality.

REFERENCES
[1] M. V. Mantyla and J. Vanhanen, “Software Deployment Activities and

Challenges - A Case Study of Four Software Product Companies,” 2011
15th European Conference on Software Maintenance and Reengineering,
Mar. 2011, pp. 131–140.

[2] J. Humble and F. David, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. ser. Addison-
Wesley Signature Series. Pearson Education, 2010.

[3] T. Ernawati and D. R. Nugroho, “IT Risk Management Framework Based
on ISO 31000:2009,” International Conference on System Engineering
and Technology, vol. 11, 2012, pp. 1–8.

[4] B. Fitzgerald, “Continuous Software Engineering and Beyond : Trends
and Challenges Categories and Subject Descriptors,” RCoSE 14, 2014,
pp. 1–9.

[5] H. Lacheiner and R. Ramler, “Application Lifecycle Management as
Infrastructure for Software Process Improvement and Evolution: Experi-
ence and Insights from Industry,” 2011 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, Aug. 2011, pp.
286–293.

[6] S. Krusche and L. Alperowitz, “Introduction of Continuous Delivery
in Multi-Customer Project Courses Categories and Subject Descriptors,”
ICSE Companion 14, 2014, pp. 335–343.

[7] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward Design
Decisions to Enable Deployability: Empirical Study of Three Projects
Reaching for the Continuous Delivery Holy Grail,” 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, Jun. 2014, pp. 702–707.

[8] E. Gomede and R. M. Barros, “A Non-Intrusive Process to Software
Engineering Decision Support focused on increasing the Quality of
Software Development,” The 25th International Conference on Software
Engineering and Knowledge Engineering, Boston, MA, USA, June 27-
29, 2013., Jun. 2013, pp. 95–100.

325


